Particle-Size Analysis

Geologic Lab Methods - Dr. C.E. Heinzel
University of Northern Iowa
Dept. of Earth and Environmental Science

Learning objectives

- Review sedimentary particle textures
- Know Udden-Wentworth grain size scale and Phi (ϕ) scale, and the relationships between the two
- Know how to plot grain size data: histograms; frequency curves; cumulative frequency curves
- Know how to obtain grain size data
- Understand grain size descriptive statistics
 - Mode
 - Median
 - Graphic estimation of mean
 - Phi standard deviation (graphic estimation of sorting)
 - Graphic skewness

Sedimentary textures

Textural properties of siliciclastic sediments and rocks include:

- 1. Grain size
- 2. Sorting
- 3. Grain shape
 - 1. Rounding
 - 2. Sphericity
- 4. Particle surface textures
- 5. Grain fabric

Grain size scales

Udden-Wentworth scale

- Geometric scale in which each step is twice as large as the previous one
- Range is from 1/256 mm to >256 mm
- Four major size classes are
 - <u>Gravel</u> (> 2.00 mm)
 - <u>Sand</u> (1/16 mm to 2.00 mm)
 - <u>Silt</u> (1/256 mm to 1/16 mm)
 - <u>Clay</u> (< 1/256 mm)

mud

Grain size scales (continued)

- Phi scale (Krumbein)
 - Logarithmic scale useful for plotting and statistical calculations

$$\Phi = -\log_2 d$$
 (where $d = \text{grain diameter, in mm}$)

Note that 1.00 mm = 0ϕ Φ increases with smaller grain size, decreases with larger grain size

Handout

0.63" 5/8" 13.4 1/2" 7/16" -3--8.00 0.32" 5/16" .265 6.73 5.66 4.76 -2+4 4.00 0.16 3.36 2.83 2.38 2.00 1.63 - 0.08" inches 1.41 0 +1 1.2 1.00 .72 20 20 25 24 2.0 .545 30 28 1/2 35 32 .59 5.6 SAND .420 medium 45 50 .42 15 13 .297 60 .30 43 35 .210 70 80 120 91 .177 .215 100 240 3 . .125 120 115 .155 350 140 170 170 580 1000 200 1/16 230 1700 .062 250 2900 270 270 coarse 325 400 325 .031 - 1/32 medium 6 -.016 - 1/64 .008 - 1/128 te: Applies subrounded 9 +.002 .002 - 1/512 **--** .001[⊥]1/1024

SIZE TERMS

Wentworth, 1922)

- 10.1"

5.04"

2.52"

1.26"

64.0 53.9

33.1

32.0

26.9

COVERSION

 $\phi = \log_2 (d \text{ in mm})$

 $1\mu m = 0.001 mm$

-6 -

-5

SIEVE

SIZES

- 2 1/2" - 2.12"

- 1 1/2"

1.06"

Settling

Velocity

(Quartz,

20°C)

50

30

20

2

0.5

100

70

60

50

40

30

20

Minimum

(Inman, 1949)

Spheres (Gibbs, 197

100

90

50

40

10

0.5

0.329

— 0.1 - 0.085

0.0057

- 0.0014

-0.001

-0.00036

Number

of grains

per mg

Threshold

Velocity

for traction

cm/sec

1 m above

Wentworth grain size chart from United States Geological Survey Open-File Report 2006-1195

Measuring grain size

- <u>Technique</u> for measuring grain size depends on:
 - Purpose of study
 - Size range of material being measured
 - Consolidated vs. unconsolidated
- Grain size is usually expressed in terms of long dimension or intermediate dimension of particle

Measuring grain size (continued)

Type of sample	Sample grade	Method of analysis	
Unconsolidated sediment and disaggregated sedimentary rock	Boulders Cobbles Pebbles	Manual measurement of individual clasts	
	Granules Sand Silt ————————————————————————————————————	Sieving, settling-tube analysis, image analysis	
		Pipette analysis, sedimentation balances, photohydrometer, Sedigraph, laser- diffractometer, electro-resistance (e.g., Coulter counter)	
Lithified sedimentary rock	Boulders Cobbles Pebbles	Manual measurement of individual clasts	
	Granules Sand Silt ————————————————————————————————————	Thin-section measurement, image analysis	
		Electron microscope	

Measuring grain size (continued)

Sieving is useful for unconsolidated material ranging from granule to silt size

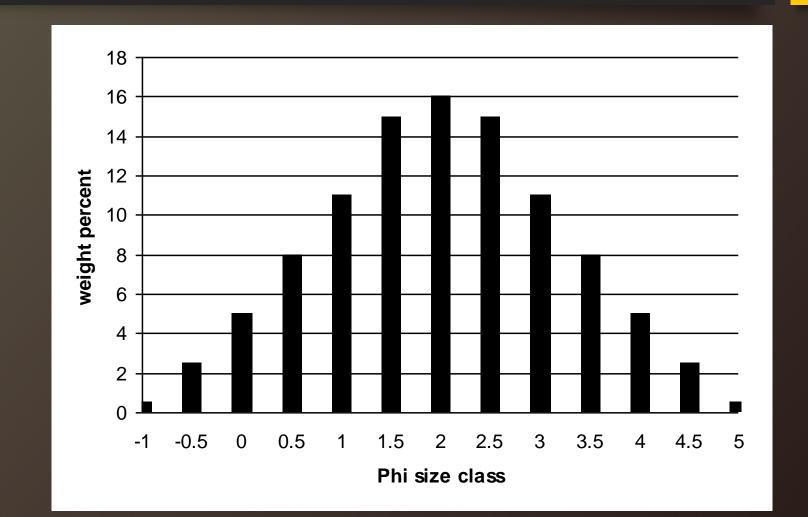
• Sieve screen catches particles according to intermediate dimension

Petrographic microscope with ocular micrometer is useful for lithified sand and silt sized material

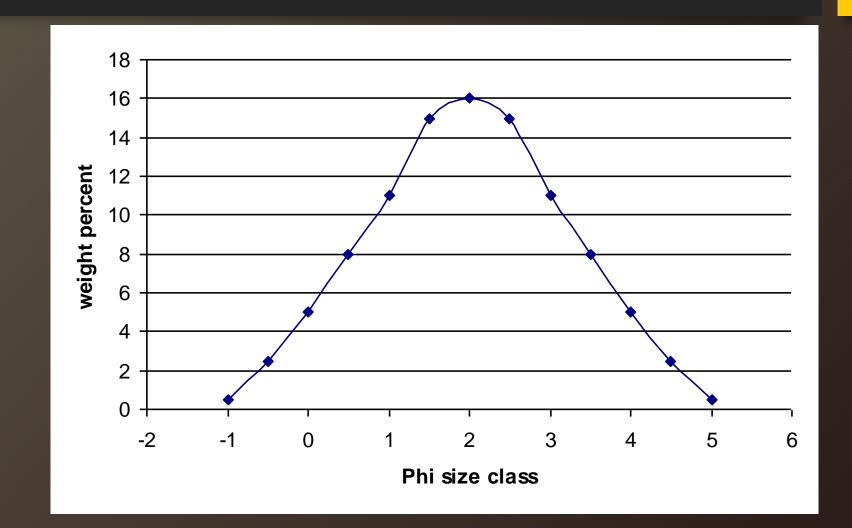
- Actual measurements or visual comparison with known standards
- Measurements tend to underestimate actual size because grain axes rarely lie in plane of thin section

Graphical treatment of grain size data

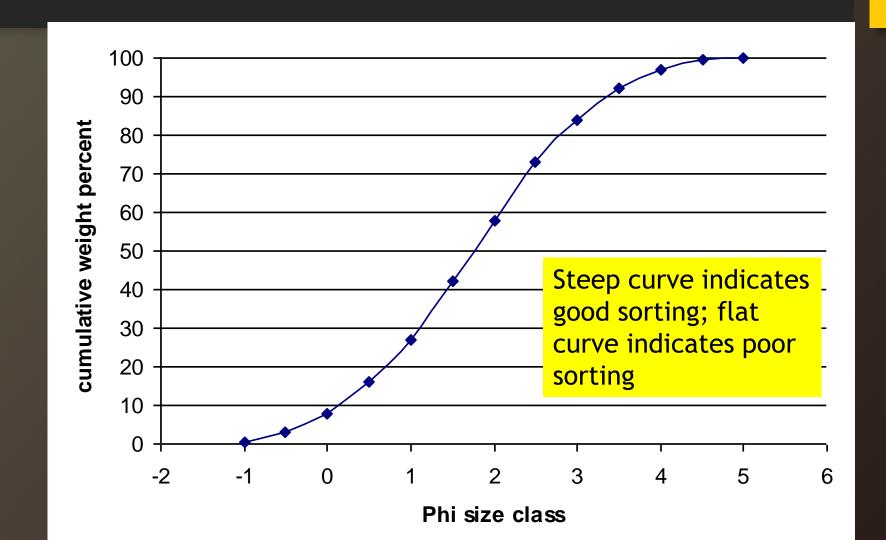
Common graphical methods for presenting grain size data are:


- Histogram
 - Individual weight percent is plotted for each φ size class
- Frequency curve
 - A histogram in which a smooth curve connects the midpoints of each size class
- Cumulative curve

 - Most useful for estimating statistical parameters


Graphical treatment of grain size data

φ size class	raw weight (gm)	individual weight percent	cumulative weight percent
-1.00	0.39	0.50	0.50
-0.50	1.96	2.50	3.00
0.00	3.92	5.00	8.00
0.50	6.26	8.00	16.00
1.00	8.61	11.00	27.00
1.50	11.75	15.00	42.00
2.00	12.53	16.00	58.00
2.50	11.75	15.00	73.00
3.00	8.61	11.00	84.00
3.50	6.26	8.00	92.00
4.00	3.92	5.00	97.00
4.50	1.96	2.50	99.50
5.00	0.39	0.50	100.00
total	78.3		


Histogram

Frequency curve

Cumulative curve

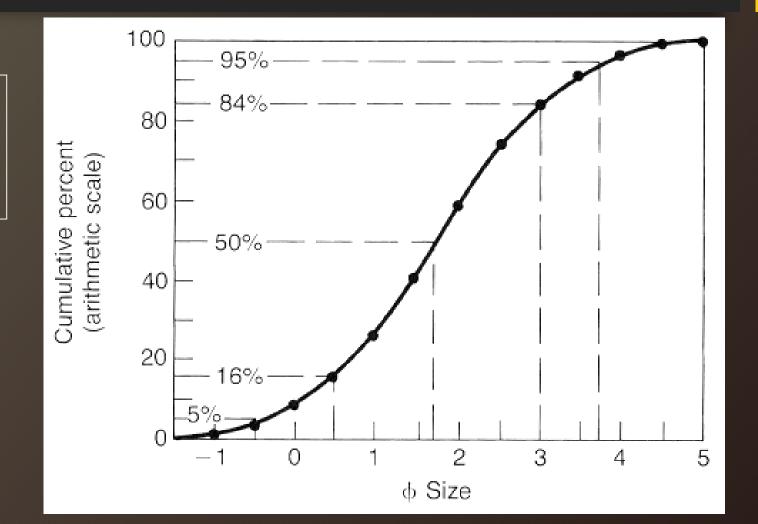
Grain size statistics

<u>Mode</u> = the most frequently occurring particle size in a population of grains

 Highest point of a frequency curve or histogram; steepest segment of a cumulative curve

<u>Median</u> = midpoint of grain size distribution

• 50th percentile on cumulative curve

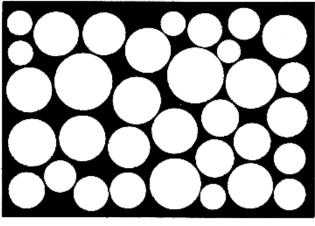

<u>Mean</u> = arithmetric average grain size

- Practically impossible to determine
- Can be approximated graphically

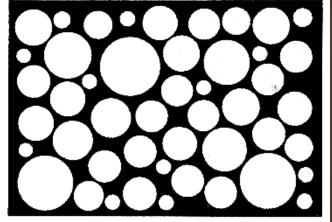
Mean = median = mode in a perfectly normal distribution; <u>but</u>, most natural samples are not normally distributed!

Determining the graphic mean particle size:

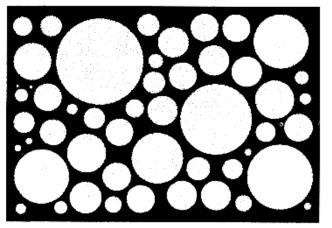
$$M_z = [\phi_{16} + \phi_{50} + \phi_{84}]$$

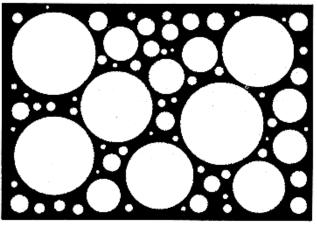


Sorting


Sorting is a measure of the <u>range of grain sizes</u> present in a population and the magnitude of the <u>scatter of those sizes around the mean size</u>

Sorting can be estimated by <u>visual comparison</u> with known standards or by <u>graphic calculations</u>


Visual estimation of sorting


VERY WELL SORTED

WELL SORTED

MODERATELY SORTED

POORLY SORTED

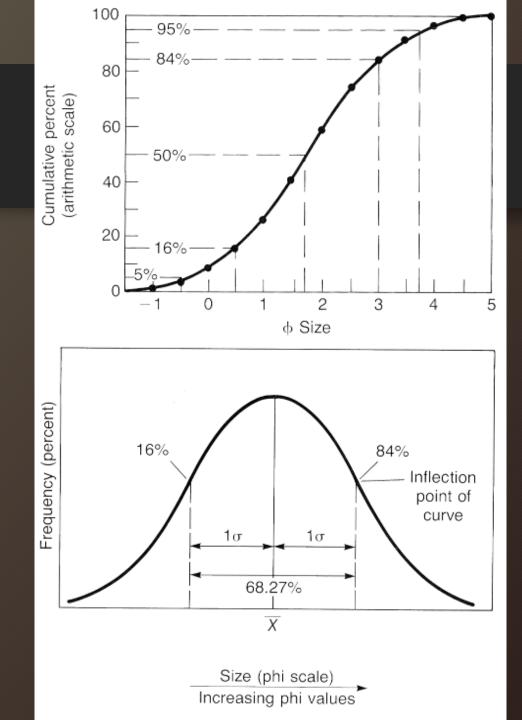
Graphic estimation of sorting

$$\sigma_{i} = \frac{\phi_{84} - \phi_{16}}{4} + \frac{\phi_{95} - \phi_{5}}{6.6}$$

Phi standard deviation

 $< 0.35\phi = very well sorted$

 $0.35-0.50\phi = \text{well sorted}$


 $0.50-0.71\phi$ = moderately well sorted

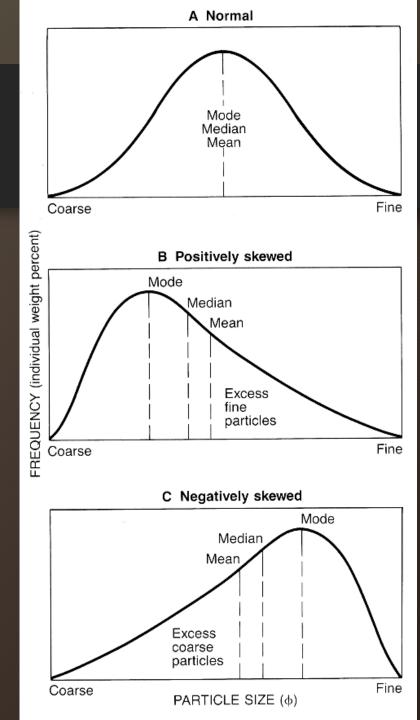
 $0.71-1.00\phi$ = moderately sorted

 $1.00-2.00\phi$ = poorly sorted

 $2.00-4.00\phi$ = very poorly sorted

 $> 4.00\phi$ = extremely poorly sorted

Application and importance of grain size data


Grain size is most useful as a descriptive property insofar as it relates to the derived properties

porosity and permeability

Grain size, in and of itself, is <u>not</u> a reliable indicator of depositional environments because the grain size distribution of a sediment is the <u>result of processes not environments</u>, <u>but it may infer the energy present</u>

• i.e., sediment transport processes are not unique to any given environment

<u>Skewness</u> = a measure of the amount of departure from a normal distribution (i.e., an asymmetrical frequency curve)

Graphical estimation of skewness

$SK_{i} = \phi_{84} + \phi_{16} - 2 \phi_{50} \qquad \phi_{95} + \phi_{5} - 2 \phi_{50} + \frac{2(\phi_{84} - \phi_{16})}{2(\phi_{95} - \phi_{5})}$

Graphic skewness

>0.30 0.30 to 0.10 0.10 to -0.10 -0.10 to -0.30 < -0.30 strongly fine skewed fine skewed nearly symmetrical coarse skewed strongly coarse skewed

Stoke's Law

$$\frac{V = (\rho_{\underline{s}} - \rho_{\underline{f}})gR^2}{18\mu}$$

V = terminal velocity

 P_{s} Mass density of particles (kg/m^3)

 $P_f = Mass density of fluid (kg/m³)$

 μ = Viscosity of water (kg/m*s)

g = gravitational acceleration (m/s²)

D = diameter of sphere

- Note that if the particle and the fluid have identical densities, no settling will occur.
- Stoke's Law is valid only for particles smaller than 0.2mm