

~

CHAPTER 9 Minerals to Rocks

Land: How Does It Shape Us?

Copyright © 2023 W. W. Norton & Company, Inc.

Adapted from Marshak (2018)

Plate Tectonics

Past

Ē

At one point in history, all the continents fit together . . .

300 million years

Present

Plate tectonic movements

Divergent

Convergent

Transform

tin Harvey/Alamy Stock Photo

'Alamy Stock Photo Greenberg Saac rev

Photo

Periodic Table of the Elements

La	Ce	Pr	Ňd	Pm	Sm	Eu	Gd	Tb	⁶⁶ Dy	Ho
Lanthanum 138.91 2.3.18.18.9.2	Cerium 140.12 2.6-18-17-9-2	Praseodymium 140.91 2-8-18-21-8-2	Neodymium 144.24 2:3-15-72-3-2	(145) 2-1-18-23-1-2	5amarium 150.36 2-8-18-24-8-2	Europium 161.%6 2.8-13.25-8-2	0adolinium 157.25 2.8.18-25.9.2	158.93 2.8.18-27-3-2	0ysprosium 162.50 2-8-78-28-8-2	Holmiun 164,93 2 8-19 29-8-2
Ac	Th	Pa	92 U	⁹³ Np	Pu	Am	Cm	⁹⁷ Bk	Сf	Es
Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium

18

VIIIA 2

He

Hetium 4.0026

2

10

Ne

Neon

20.180 2-8

18

Ar

Argon 39.948

2-8-8

36

Kr

Krypton

17

VIIA

9

F

18.998 2-7

17

CI

35.45

35

Br

15

VA

7

Ν

14.007

15

P

Phosphorus 30.974

2-8-5

33

As

Arsenic

6

16

VIA

8

0

15.999

16

S

Sulfur 32.06

2-8-5

34

Se

Selenium

©2020 Minerals Education Coalition

Learn more at www.MineralsEducationCoalition.org

Geologic Processes – Time – Mineral Distribution

Mining and processing ore has environmental consequences, including acid runoff, acid rain, and groundwater contamination.

Ore deposits can be obtained either in strip mines or in underground mines.

Circulating groundwater may extract and concentrate metals, to form ore deposits.

> Mud, a mixture of clay miner and water, accumulates in be

Ore minerals may collect on the bottom of a magma chamber.

Hydrothermal vents (black From Mud to Brick smokers) produce accumulations of massive sulfides.

From Magma to Metal

Clay, when formed into blocks and baked, becomes brick. sand, and water, when allowed to harden, becomes concrete.

Gravel itself may be quarried

Miners pan for gold in placer deposits where metal flakes and nuggets occur in sand

and gravel.

Erosion tears down mountains and

From Stream Channel to Roadbed

produces gravel and sand.

ENERGY

A mixture of lime, other elements,

Geologic materials are the substance from which cities grow.

Mixed with water, spread into sheets, and wrapped in paper, gypsum makes drywall.

In quarries, operators dig up gypsum, crush it to powder, and ship it to factories.

> Gypsum is a salt that precipitates when saline lakes evaporate. It grows as white or clear crystals.

ome of which some crushed n to become lim<mark>e.</mark>

s, shells and shell fragments collect and eventually form beds of limestone. From Lake Bed to Drywall

Source to Production

Organisms extract ions from water and construct shells. From Sea Floor to Sidewalk

Minerals

Rocks

Igneous

Sedimentary

Metamorphic

48-52%

Basalt

Andesite

Ca

Gabbro

Peridotite

Pyroxene

(Augite)

Olivine

The right side of the chart

Rhyolite

shows the percentages of

different minerals in the

different rock types.

MgO

FeO

AL₂O₃

TiO₂

SiO₂

Mafic

50%

High density

 (3.4 g/cm^3)

Mafic

Ultramafic

Basalt

Komatiite

(Picrite)

Mining If you cannot grow it, you must mine it.

Open Pit mining

drump trucks

Subsoil stripped by

and carefully scored

motor scrappers

Reclamation

Spoil pile Dragline buckets unload burden

Graded Embankment to act as a baffle

Overburden

Coal seams

against noise and dust

After that the soils are replaced in their proper sequence, they are ripped to relieve and compaction and then cultivated, limited

Underground mining

Igneous Rocks = Source material for...

Hard minerals = Hard rocks

- Metals
 - Base
 - Precious
 - Rare-Earth
- Building materials
- Gemstones
 - Diamond, Tourmaline, Topaz
- Construction/Production

Display

A mobile device's glass screen is very durable because glassmakers combine its main ingredient, silica (silicon dioxide or quartz) sand, with ceramic materials and then add potassium.

Gallium provides light emitting diode (LED) backlighting. Bauxite is the primary source of this commodity.

Sphalerite is the source of indium (used in the screen's conductive coating) and germanium (used in displays and LEDs).

Mineral Resources Program

The USGS Mineral Resources Program delivers science and information to understand resource potential, production, tion, and how minerals interact with the

of tin.

The content of copper in a mobile device far exceeds the amount of any other metal. Copper conducts electricity and heat and comes from the source mineral chalcopyrite.

Electronics and Circuitry

Silicon, very abundant in the Earth's crust, is produced from the source mineral quartz and is the basis of integrated circuits.

Arsenopyrite is a source of arsenic. which is used in radio frequency and power amplifiers.

Tantalum, from the source mineral tantalite, is added to capacitors to regulate voltage and improve the audio quality of a device.

Wolframite is a source of tungsten, which acts as a heat sink and provides the mass for mobile phone vibration.

Battery

Spodumene and subsurface brines are the sources of lithium used in cathodes of lithium-ion batteries.

Graphite is used for the anodes of lithium-ion batteries because of its electrical and thermal conductivity.

Speakers and Vibration

Bastnaesite is a source of rare-earth elements used to produce magnets in speakers, microphones, and vibration motors.

Base metals – common E.g. Iron, Copper, Nickel, Lead

DATA SOURCE: UNITED STATES GEOLOGICAL SURVEY (2013)

REEs

TABLE 9.1 Rare Earth Elements and Their Applications

Element	Example Applications			
Yttrium	Metal alloys, visual displays, lasers, lighting			
Lanthanum	Optical glass, nickel-metal-hydride batteries			
Cerium	Colored glass (flat-panel displays), automobile catalytic converters			
Praseodymium	Super-strong magnets, metal alloys, specialty glass, lasers			
Neodymium	Permanent magnets			
Samarium	Permanent magnets, nuclear reactor control rods, lasers			
Europium	Optical fibers, visual displays, lighting			
Gadolinium	Shielding in nuclear reactors, X-ray and magnetic resonance imaging scanning systems			
Terbium	Visual displays, fuel cells, lighting			
Dysprosium	Permanent magnets, lighting			
Holmium	Lasers, high-strength magnets, glass coloring			
Erbium	Glass coloring, fiber-optic cables			
Thulium	Lasers, portable X-ray machines			
Ytterbium	Stainless steel, lasers			
Lutetium	Petroleum refining			
Adapted from Van Gosen et al. (2019).				

Kimberlites

A typical diamond mine

Construction Production

Gustav Vigeland Sculpture Park

Sioux Quartzite

- Gitchi Manitou State Preserve
 1969
- The rock is still quarried near Sioux Falls, SD
- Was mistaking called Sioux Granite

Sioux Quartzite

- Correlates to Baraboo Quartzite
 - Occurs in eastern IA at great depths

Federal building in Sioux Falls, SD

Rock Co. Court House, MN

مجديدة المالية والمراجع والمترجع والمراجع والمالية والمتحد والم THE REPORT OF THE PARTY OF

and the second of the

- to to to to to

and a later

Hilly and

Tell.

Sedimentary Rock Types

<u>Clastic</u>

- Boulder
- Cobble Breccia or Conglomerate
- Pebble
- Sand Sandstone
- Silt Siltstone
- Clay Shale

Chemical

- Limestone
- Dolostone
- Chert
- Evaporates

Sedimentary Rocks = Source material for

- Building materials
- Energy (Coal, oil, gas, *different presentation*)
- Secondary gemstones
 Jasper, Garnet, Zircon, Opal
- Agriculture
 - Weathering to Sediment to Soil
- Food
 - E.g. Salt

Iowa's Minerals and Rocks

- Galena
 - Lead
 - Zinc
- Gypsum
- Silica sand
- Iron

www.limestone.org

Wendling Quarries Inc.

Iowa - Lead and Zinc

- Near Dubuque, Iowa
 - Start approx. 1650
 - Peak 1830 to 1860
 - End 1910

lowa – Iron ore

- Waukon, Allamakee County
- Iron Hill deposit
- First mined in 1899
- Missouri Iron Company of St. Louis operated a plant in Iowa until 1918.

Non – Metallic, Mineral Resources

Iowa – Clay

- In 1900 there were 381 clay companies operating in 89 of lowa's counties!
- Shale bedrock, river alluvium, glacial sediment
- Produced brick and tile
- Today only 3 companies mine clay for bricks in Dallas and Woodbury counties

Iowa – Cement

- Burnt lime via kiln fired limestone.
 - Calcining to produce quicklime or calcium oxide
 - $CaCO_3$ + Heat \rightarrow CaO + CO₂(g)
- Silurian Age Dolostone
 - Hopkinton Formation
 - Farmers Creek Member
 - Marcus Member
- Jackson and Cedar Counties

Iowa - Portland Cement

- Hardens underwater
- Put Kiln burning out of business
- Four plants continue to operate in Cerro Grodo, Polk, and Scott counties.
- Accounts for approx. 40% of mineral production today in lowa.

Iowa – Stone/aggregate

- 19th century construction
- Primary production centers include Cedar, Jones, Des Moines, Marshall, Lee, Madison and Jackson counties
- In 1982, crushed stone surpassed Portland Cement as lowa's leading mineral commodity
- There are nearly 500 registered quarries in Iowa today

Iowa – Gypsum

- Fort Dodge, Iowa 1850
- Two million tons per year at a value of \$12 million
- Products
 - Wall board
 - Portland cement

Iowa – Sand and Gravel

- Important resource for Iowa's roads and construction.
- In Iowa's river valleys past and present...
- Approx. 16 million tons per year are mined per year at a value of approx. \$60 million.

Metamorphic rocks = Source material for...

- Building material
 - Sandstone to harder Quartzite
 - Limestone to harder Marble
 - Shale to harder Slate
- Gemstones
 - Emerald, Jade, Ruby, lapis lazuli, Sapphire, Zircon

Low

Silicosis

Inhaled silica dust can cause scar tissue inside the lungs

Silica dust gets trapped in the alveoli

ST VINCENT'S HOSPITAL LUNG HEALTH

must be something in the air

t dangerous gases in mining

U.S. Department of Labor NSHA Mine Safety & Health Administration

Risk	Affected compartments	Relevant toxic compounds
Overtopping of tailings dam	groundwater, surface water, soil	• in most cases
Collapse of tailings dam by poor construction	groundwater, surface water, soil	radionuclides, mainly thorium and uranium;
Collapse of tailing dam by seismic event	groundwater, surface water, soil	 heavy metals; acids;
Pipe leakage	groundwater, surface water, soil	fluorides; Air emissions:
Ground of tailing pond not leak- proof	groundwater	 in most cases radionuclides, mainly
Waste rock stockpiles exposed to rainwater	groundwater, surface water, soil	thorium and uranium;heavy metals;
Dusts from waste rock and tailings	air, soil	• HF, HCI, SO ₂ etc.
No site-rehabilitation after cease of mining operation	land-use, long-term contaminated land	
Processing without flue gas filters	air, soil	
Processing without waste water treatment	surface water	

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)

- December 11, 1980
- Law created a tax on the chemical and petroleum industries

- Established prohibitions and requirements concerning closed to abandoned hazardous waste sites;
- Provided for liability of persons responsible for releases of hazardous waste at these sites; and
- Established a trust fund to provide for cleanup when no responsible party could be identified.

Superfund – EPA program – 40 yr. anniversary

- <u>https://www.epa.gov/superfund</u>
- Responsible for cleaning up some of the nation's most contaminated land and responding to environmental emergencies, oil spills and natural disasters.
- Does Iowa have any? Use the Website to learn more...

Butte, Montana Berkeley Pit -

Copper Mine (opened 1955/closed Earth Day 1982) Approx. 50 billion gal. of toxic water (pH = 2.7) Copper, iron, arsenic, cadmium, sulfuric acid

