Eolian Processes and Landforms

An introduction to arid landscapes

Dry landscapes

- □ Largest identifiable climatic region on Earth
 - Seasonal or annual precipitation is insufficient to maintain vegetation cover and permit perennial streams to flow.
- Between 30 and 40 percent of the Earth's current landscapes may be classified as Arid!

The aridity index

- P = Annual precipitation /
 ETP = Annual potential evapotranspiration
 - Hyper-arid: P/ETP < 0.03
 - Arid: 0.03 < P/ETP < 0.20
 - Semiarid: 0.20 < P/ETP < 0.50
 - Sub-humid: 0.50 < P/ETP < 0.70</p>

Geomorphic Processes in Deserts

- 1. Weathering (slow, thin soil)
 - a. Rock varnish: coating of rocks by Fe and Mn oxides caused by bacterial ppt.
 - b. Cryptobiotic soil
- 2. Mass wasting
- 3. Erosion/Deposition

Two mechanism for dry landscapes

 Global circulation (wind), Between 20 to 30 latitude below and above the equator.

Mid-latitude dry areas

- 2. Interiors of large continents;
 - a. Wide areas of semi-aridity surrounding smaller cores of true desert;
 - b. Common freezing temperatures in winter;
 - c. West edges of continents cold ocean currents flow onshore or topographic rain shadows.

Environments of varying aridity

- □ Semiarid to sub-humid
- Desert plains
- Mountainous deserts
- Savannas

Semiarid to sub-humid

- □ Steppes (prairies, velds, and pampas)
- □ Characterized by;
 - Grass cover
 - Up to 2x the annual precipitation of a desert
 - Graded rivers
- Steppe regions = low plains or dissected plateaus (e.g. Our Great Plains)

Desert plains

- Playa (sabkha) lakes, plains, hammadas
 - monotonous plains and plateaus/ interiors of large continents

Mountain deserts

- Examples, Basin and Range Province; Pacific coastal desert of South America
- □ Characterized by
 - Bajada (coalescing alluvial fans)
 - Pediments (plains that lie at the base of mountains in an arid region)

Savanna

- Tropical regions of sparse open woodlands, thorny shrubs, grass cover.
- Inselbergs, steep-sided, isolated hills, and mountains of barren rock that rise above the surrounding flat plains.
 - Wet season/islands
- Hot year round + seasonally wet = extensive chemically weathering

Movement of material by wind

- □ Suspension
- □ Saltation
- □ Impact creep
- □ Drag

Wind velocity Vs. particle size

Maximum size of moving particles	Wind velocity (km/hr)
0.25 mm	16-24
0.50	24-30
0.75	30-35
1.0	35-40
1.5	40-45 or (25-28 mi/hr)

Twenhofel, 1932

Dune types

A Few Types

- □ Barchan
- Parabolic
- □ Blowout
- □ Linear
- □ Star

Barchan

- □ Concentric
- □ Isolated
- Move 15 to 25
 m/yr in the Salton
 Sea Basin, CA

Parabolic

- Common on coast lines
- □ Singular wind direction

Blowout

Partially stabilized sandy terrenes

Linear or longitudinal

- □ May extend 100's of km
- Well developed in trade wind deserts
 - Where wind is uniform or changes seasonally

Star

Up to several 100's of meters in height
 Product of effective multiple winds
 blowing from several directions

Dune Morphology

Desert Pavement

Time

Dust and Loess

Initially resistant to transport but, one in suspension dust can be lifted up to 1000's of meters in the air and carried long distances

