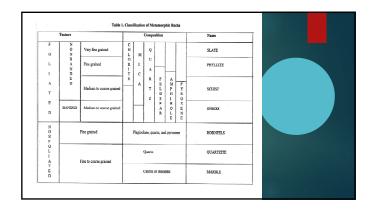
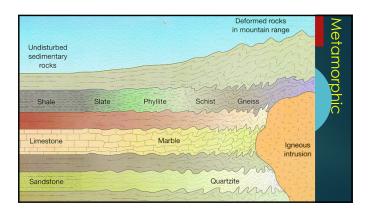
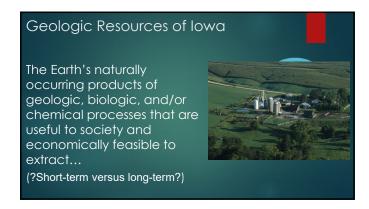

_	B. Chemical I	Precipitates / Nonclastic	Rocks	
Texture Text		Mineral Composition		Name
Coar	Medium to coarse grained		L	Crystalline Limestone
Med Grai (1/1)	Microcrystalline,conchoidal fracture	Calcite (CaCO ₃)	M E S T O N E S	Micrite
	Aggregates of oolites			Oolitic Limestone
	Shell fragments loosely cemented			Coquina
	Abundant fossils in calcareous matrix			Fossiliferous Limeston
	Shells of microscopic organisms, clay-soft			Chalk
	Banded calcite			Travertine
	Textures are similiar to those in limestone	Dolomite (CaMg(CO ₃) ₂)		Dolomite
	Microcrystalline, dense	Quartz (SiO ₂)		Chert
Fine (1/2:	Fine to coarse crystalline	Gypsum (CaSO ₄ ·2H ₂ O)		Gypsum
Very	Fine to coarse crystalline	Halite (NaCl)		Rock Salt
(<1	Massive or laminated	Organic Matter (Carbonaceous)		Coal









Gypsum

Chemical formula = CaSO₄: 2H₂O

Luster- Non-Metallic (vitreous, silky)

Color – White to clear

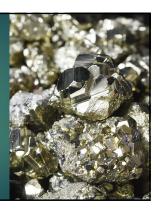
Breakage – 1 perfect 'platy' 2 others

Streak - White

Gypsum's 'BIA' graphy

- ▶ Name Gypsos, Greek for plaster
- ➤ Source Webster, Des Moines, and Marion Counties
- ▶ Use plaster, drywall, cement
- ► Economy Approx. 2 million tons mined from Iowa per year (\$11 million)

Galena


Chemical formula – PbS Luster = Metallic Color – Grey, silver Breakage – Cubic Streak – grey

Galena's 'BIA'graphy Name - Galena, Latin for leadore Source - Dubuque, IA - Galena, IL Use - lead ore - bullets, transisto Economy - Peak (1845 to 1855) around 4000 tons per year

Pyrite

Chemical formula – FeS₂ Luster = Metallic Color – Yellow, brass Breakage – none/fracture Streak – yellowish grey Hardness – 4 (penny to nail)

Pyrite's 'BIA'graphy

- ► Name Pyrite, Greek pyr for fire
- ► Source minor amounts in limestone
- ▶ Use Sulfur, sulfuric acid
- ► Economy not economically feasible in lowa, not concentrated

Calcite

Chemical formula – CaCO₃

Luster = Non Metallic

Color – Yellow, clear, red, brown

Breakage – 3 perfect planes not @

90

Streak – white

Hardness = 3 (fingernail to penny)

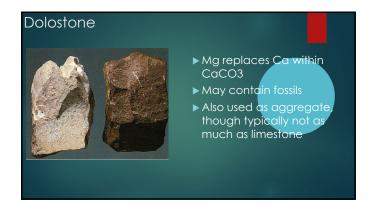
Calcite's 'BiA' graphy

- ▶ Name Chalx Greek for lime
- ➤ Source primary mineral of limestone, pure crystals are not common..
- ▶ Use to help make steel, cement, and glass
- ► Economy not as a mineral, only as aggregate

Quartz


Chemical formula – SiO₂
Luster = Non Metallic
Color – clear, white, rose, smoky
Breakage – None / fracture
Streak – none
Hardness = 7 (glass)

Quartz's 'BIA'graphy Name – Quartz, German? Source – Igneous rocks, In Iowa as silicate sand Use – foundry, glass, and chemical industries Economy – 'exploding' as fracking sand


Local Rocks Rocks are aggregates of more than one mineral and or other rocks... Rocks are heterogeneous

Shale ► Silt to clay sized particles ► Mixed assemblage of minerals

- ► Deposited in low energy environments
 - ▶ Ponds
 - ▶ Floodplains

Geode

- ▶ Latin Earthlike
- ▶ Geologic recourses of great beauty
- ▶ 1967, named the official state rock by the lowa General Assembly
- ► Warsaw and Keokuk formations of SE Iowa, W. Illinois, and NE Missouri
- May also be found in NE Iowa near Jesup

How do geodes form?

- 4) Minerals/crystals inside geodes were transported in groundwater (saturated) solutions and then precipitated as replacements of the geode walls or as crystalline growths within their hollow interiors.
- 5) The ultimate source of the mineralizing waters remains speculative.
- 6) Many common geode mineral, especially quartz, are weakly soluble. Therefore, substantial volumes of water had to migrate through the lower Warsaw strata to precipitate the observed minerals.

Brian J. Witzke